Date of Award
Spring 6-3-2023
Document Type
Thesis
Degree Name
Master of Architecture (MArch)
Department
Architecture
First Advisor
Anne Tate
Second Advisor
Ryan McCaffery
Abstract
Abstract
This design thesis explores the potential of combining ancient Mortise-and-Tenon joinery techniques with modern timber construction to create sustainable seismic architecture that simultaneously reduces embodied carbon. By studying the enduring qualities of Mortise-and-Tenon structures and their ability to withstand earthquakes, this research uncovers a synergistic relationship between traditional joinery methods and contemporary building materials, unlocking significant opportunities for embodied carbon reduction ranging from 7 to 40% compared to other modern architecture construction.
The research reveals that Mortise-and-Tenon structures commonly incorporate large roof systems, acting as mass dampers that provide flexibility and distribute weight evenly to columns. By transferring the substantial roof load to the columns, these structures exhibit a dynamic interaction with the surrounding landscape. Inspired by this discovery, the subsequent phase of the thesis focuses on modern large roof architecture, with a commitment to incorporating wisdom from the past and exploring possibilities for the future.
Practical design solutions derived from the knowledge and insights gained throughout the research are crucial for my thesis design project. Therefore, the final design proposal centers around a high school in Chula Vista, California, with particular emphasis on the gymnasium building. By reinterpreting traditional structures with new materials such as cross-laminated timber (CLT), the design seeks to address seismic threats while honoring the legacy of the past.
In summary, this thesis presents a design approach that harnesses the sustainable qualities of Mortise-and-Tenon joinery and integrates them with modern timber construction to create earthquake-resistant structures with reduced embodied carbon. The research highlights the significance of embracing innovative methods to achieve truly green and sustainable architecture. By sharing the highlights, valuable insights, and outcomes of this thesis project, the presentation aims to inspire the audience and foster a deeper understanding of the transformative potential of sustainable seismic architecture.
Recommended Citation
Li, Cong, "Sustainable Seismic Architecture: Exploring the Synergy of Mortise-and-Tenon Joinery and Modern Timber Construction for Reducing Embodied Carbon" (2023). Masters Theses. 1050.
https://digitalcommons.risd.edu/masterstheses/1050
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Included in
Architectural Engineering Commons, Architectural Technology Commons, Construction Engineering Commons, Other Architecture Commons